Site Language

Translate

Russian Albanian Arabic Armenian Azerbaijani Belarusian Bulgarian Catalan Croatian Czech Danish Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Serbian Slovak Slovenian Spanish Swedish Turkish Ukrainian Yiddish

CashBack Реальный возврат при покупках в интернете

Основные версии плат Arduino

Due — плата на базе 32-битного ARM микропроцессора Cortex-M3 ARM SAM3U4E;

Leonardo — плата на микроконтроллере ATmega32U4;

Uno — самая популярная версия базовой платформы Arduino;

Duemilanove — плата на микроконтроллере ATmega168 или ATmega328;

Diecimila — версия базовой платформы Arduino USB;

Nano — компактная платформа, используемая как макет. Nano подключается к компьютеру при помощи кабеля USB Mini-B;

Mega ADK — версия платы Mega 2560 с поддержкой интерфейса USB-host для связи с телефонами на Android и другими устройствами с интерфейсом USB;

Mega2560 — плата на базе микроконтроллера ATmega2560 с использованием чипа ATMega8U2 для последовательного соединения по USB-порту;

Mega — версия серии Mega на базе микроконтроллера ATmega1280;

Arduino BT — платформа с модулем Bluetooth для беспроводной связи и программирования;

LilyPad — платформа, разработанная для переноски, может зашиваться в ткань;

Fio — платформа разработана для беспроводных применений. Fio содержит разъем для радио XBee, разъем для батареи LiPo и встроенную схему подзарядки;

Mini — самая маленькая платформа Arduino;

Pro — платформа, разработанная для опытных пользователей, может являться частью большего проекта;

Pro Mini — как и платформа Pro, разработана для опытных пользователей, которым требуется низкая цена, меньшие размеры и дополнительная функциональность.

 

CashBack Все честно и без обмана

 

Это информационный ресурс с лучшими инструкциями и туториалами по использованию контроллеров Arduino

 Карта сайта Arduino, Mega ADK, Cubieboard Cubietech, Arduino Uno, Arduino Mega2560, Карта сайта, Arduino Fio, Cubietruck, Arduino Ethernet, Esplora, Arduino Robot, Raspberry, Arduino Leonardo, Arduino Due, Arduino Micro, Banana, Intel Galileo Gen 2, Arduino Duemilanove, Beaglebone, BananaPro, Arduino Usb, Intel, Intel Galileo, Intel, Intel Galileo, Intel Edison, Intel Edison, Intel Galileo Gen 2, Карта сайта, Arduino Duemilanove, Mega ADK, Arduino Duemilanove, Arduino Nano, Arduino Leonardo, Arduino Due, Arduino Micro, Arduino Lilypad, Arduino Uno, Arduino Uno, Arduino Mega2560, Cubietruck, Raspberry, Banana, Arduino Leonardo, Arduino Due, Lilypad Arduino Simple, Lilypad, Arduino Usb, Arduino Micro, Lilypad, Arduino Simple Snap, Lilypad Arduino Simple, Intel, Lilypad, Arduino Cubieboard, Arduino Usb, BananaPro, Arduino Gemma, Arduino EthernetArduino Yin, Arduino Zero, Mega ADK, Arduino 101 Genuino 101, Arduino mini, Lilypad Arduino Simple, Lilypad, Arduino Pro, Intel, Arduino Fio, Arduino Gemma, Arduino BT, Arduino Fio, Arduino Mega, Arduino NanoMega ADK, Arduino Uno, Arduino Diecimila, BananaPro, Intel, Intel Galileo, Arduino Ethernet, Arduino BT, Arduino Mega, Arduino Duemilanove, Arduino Nano, Esplora, Raspberry, Banana, Arduino Robot

Инфракрасные датчики расстояния

Для измерения расстояния до объекта существуют также и оптические датчики, основанные на методе триангуляции. Самые распространенные из них — это инфракрасные (Infra-Red, IR) датчики расстояния с выходным аналоговым напряжением, производимые фирмой Sharp

 Инфракрасные датчики расстояния
   

В датчиках Sharp установлен инфракрасный (IR) светодиод (LED) с линзой, который излучает узкий световой луч. Отраженный от объекта луч направляется через другую линзу на позиционно-чувствительный фотоэлемент (Position-Sensitive Detector, PSD). От местоположения падающего на PSD луча зависит его проводимость. Проводимость преобразуется в напряжение и, к примеру, оцифровывая его аналогоцифровым преобразователем микроконтроллера, можно вычислить расстояние.

 

 Путь светового луча инфракрасного измерителя расстояния
Путь светового луча инфракрасного измерителя расстояния 

Выход датчика расстояния Sharp обратно пропорциональный — с увеличением расстояния его значение медленно уменьшается. Вид графика зависимости между расстоянием и напряжением приведен на рис. Датчики, в зависимости от их типа, имеют границы измерения, в пределах которых их выход может быть признан надежным. Измерение максимального реального расстояния ограничивают два фактора: уменьшение интенсивности отраженного света и невозможность PSD регистрировать незначительные изменения местоположения отображенного луча.

 

 

При измерении расстояния до сильно удаленных объектов выход датчика остается приблизительно таким же, как и при измерении минимально удаленных расстояний. Минимально измеряемое расстояние ограничено особенностями датчика Sharp, а именно — выходное напряжение при уменьшении расстояния (в зависимости от датчика — от 4-х до 20 см) начинает резко падать. По существу это означает, что одному значению выходного напряжения соответствуют два расстояния: очень близкое и очень далекое. Для предотвращения проблемы следует избегать слишком близкого приближения объектов к датчику.

В целом график зависимости между расстоянием и напряжением не является линейным, однако в пределах допустимых расстояний график обратной величины выходного напряжения и расстояния к линейности приближается достаточно близко, и с его помощью довольно просто получить формулу для преобразования напряжения в расстояние. Для нахождения такой формулы необходимо точки этого графика ввести в какую-либо программу обработки табличных данных и из них создать новый график. В программе обработки табличных данных на основе точек графика возможно автоматически вычислить линию тренда.  приведен график связи исправленной обратной величины между выходным напряжением инфракрасного датчика GP2Y0A21YK и расстоянием вместе с линейной линией тренда. Выходное напряжение для упрощения формулы уже переведено в 10-битное значение аналогово-цифрового преобразователя с опорным напряжением +5 В.

 

 

График зависимости между выходным напряжением датчика GP2Y0A21YK и расстоянием
График зависимости между выходным напряжением датчика GP2Y0A21YK и расстоянием

Подключение датчиков  к Arduino

Работать с сенсорами Sharp очень просто — достаточно подключить к нему пита- ние и завести вывод Vo на аналоговый вход Arduino. Значение получаемой функции analogRead представляет собой целое число от 0 до 1023. Таким образом, чтобы узнать напряжение на выходе сенсора, необходимо значение на аналоговом входе Arduino умножить на 0,0048828125 (5 В / 1024). Содержимое скетча, выдающего расстояние, измеряемое датчиком Sharp, в последовательный порт, представлено примере

//

//

//

int IRpin = 0; // аналоговый пин для подключения выхода Vo сенсора

void setup() {

Serial.begin(9600); // старт последовательного порта

}

void loop() {

// 5V/1024 = 0.0048828125

float volts = analogRead(IRpin)*0.0048828125;

// считываем значение сенсора и переводим в напряжение Serial.println(volts); // выдаем в порт delay(100);

}

 

 Плата расширения L293D, ИК-датчик VS1838B, TFT LCD, Модем M590E GSM GPRS, "монитор TFT LCD, датчик движения HC-SR501, ИК-пульт дистанционного управления, Радиомодуль NRF24L01, SD Card Module, Звуковой модуль, 5-axis stepper motor driver, Шаговый двигатель, Модем M590E GSM GPRS, 5-axis stepper motor driver,  Часы реального времени DS 3231/DS 1307, терморегулятор W1209 DC, Релейный модуль, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E,  датчик движения HC-SR501, Передатчик и приемник в диапазоне RF 433 Mhz, Блок питания, L293D, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, Датчики контроля температуры, Радиомодуль NRF24L01, OKI 120A2, Rotary Encoder, SD Card Module, Беспроводной пульт дистанционного управления, Микросхема контроллера коллекторного электродвигателя, Модуль Bluetooth HC-06,, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Mini 360 на схеме LM2596, MP3-TF-16P, L293D, Модуль LCD монитора, Инфракрасные датчики расстояния, Часы реального времени,  USB Host Shield, HC-SR501, Cветочувствительный датчик сопротивления, блок питания Mini 360 на схеме LM2596, ЖК-дисплей TFT дисплей, Контроллер L298N, HC-SR501, Модуль MP3 Player WTV020, GSM GPRS, Сервоприводы, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Модуль Wi-Fi ESP8266-12E, Инфракрасные датчики расстояния, Card Module, Ультразвуковые дальномеры HC-SR04, Блок питания,  Карта памяти SD, Mini 360, Ethernet shield, L293D, блок питания Mini 360 на схеме LM2596, Радиомодуль, датчик температуры DS18B20, ИК-пульт дистанционного управления, USB конвертер UART, ИК-пульт,  Антена для модуля WiFi, Ethernet shield,  Модуль блока питания XL6009, Микросхема контроллера коллекторного электродвигателя, Модуль качества воздуха MQ-135, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, SD Card Module, Радиомодуль NRF24L01, двигатель OKI,  5-axis stepper motor driver, L293D, TB6560, Драйвер шагового двигателя TB6600, Шаговый двигатель,  Модуль камеры, Блок питания, L293D, блок питания Mini 360 на схеме LM2596, 5axis mach3 interface, Карта памяти SD, Ethernet shield, Контроллер L298N, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E, Модуль LCD монитора LCD1602, Шаговый двигатель OKI 120A2, Шаговый двигатель, Шаговый двигатель.

 

All Vintage Vinyl Records VinylSU.xyz

1.png2.png3.png4.png5.png