Site Language

Translate

Russian Albanian Arabic Armenian Azerbaijani Belarusian Bulgarian Catalan Croatian Czech Danish Dutch English Estonian Filipino Finnish French Galician Georgian German Greek Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian Persian Polish Portuguese Romanian Serbian Slovak Slovenian Spanish Swedish Turkish Ukrainian Yiddish

CashBack Реальный возврат при покупках в интернете

CashBack Все честно и без обмана

Arduino Due

Arduino Due — плата микроконтроллера на базе процессора Atmel SAM3X8E ARM Cortex-M3. Это первая плата Arduino на основе 32-битного микро- контроллера с ARM-ядром.

В отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое выдерживают входы/выходы, составляет 3,3 В.

Arduino Due
Arduino Due Arduino Due  

Плата Arduino Due

 

 Характеристики платы Arduino Due

Микроконтроллер

AT91SAM3X8E

Рабочее напряжение

3,3 В

Входное напряжение (рекомендуемое)

7–12 В

Входное напряжение (предельное)

6–20 В

Цифровые входы/выходы

54 (на 12 из которых реализуется выход ШИМ)

Аналоговые входы

12

Аналоговые выходы

2 (ЦАП)

Постоянный ток через вход/выход

50 мА

Постоянный ток для вывода 3,3 В

800 мА

Постоянный ток для вывода 5 В

800 мА

Флеш-память

512 Кбайт

ОЗУ

96 Кбайт (два банка: 64 Кбайт и 32 Кбайт)

Тактовая частота

84 МГц

Общие сведения

Arduino Due - это устройство на основе микропроцессора Atmel SAM3X8E ARM Cortex-M3 Это первая плата Ардуино на базе 32-разрядного микроконтроллера ARM. В ее состав входят 54 цифровых вывода (из которых 12 могут работать в качестве ШИМ-выходов), 12 аналоговых входов, 4 UART (аппаратных приемопередатчика, осуществляющих последовательную передачу данных), генератор тактовой частоты на 84 МГц, USB с поддержкой технологии OTG, 2 ЦАП (цифро-аналоговых преобразователя), 2 TWI, разъем питания, разъем SPI, разъем JTAG, кнопка сброса и кнопка очистки памяти.

Внимание: в отличие от других плат Ардуино, рабочее напряжение Arduino Due составляет 3.3В. Соответственно, максимальное напряжение, которое могут выдержать его выводы, равно 3.3В. Подача на вывод большего напряжения (например, 5В) может привести к выходу платы из строя.

В состав устройства входит все необходимое для обеспечения работы микроконтроллера; для начала работы достаточно просто подать питание от AC/DC-адаптера или батарейки, либо подключить его к компьютеру посредством USB-кабеля. Arduino Due совместим со всеми платами расширения, работающими от 3.3В, и соответствует требованиям распиновки 1.0:

  • Выводы SDA и SCL (TWI) расположены возле вывода AREF.
  • Присутствует вывод IOREF, позволяющий платам расширения подстраиваться под рабочее напряжение Ардуино. Благодаря этому, платы расширения могут быть совместимы как с 3.3В-Ардуино (подобными Due), так и с 5В-Ардуино на основе микроконтроллеров AVR.
  • Предусмотрен свободный вывод, зарезервированный для будущих целей.

Преимущества использования ядра ARM

Благодаря использованию 32-разрядного ядра ARM, Arduino Due во многом превосходит типичные платы на базе 8-разрядных микроконтроллеров. Наиболее существенные отличия заключаются в следующем:

  • 32-битное ядро позволяет обрабатывать 4х-байтовые данные всего за один такт. (Для получения более подробной информации см. описание типа int).
  • Тактовая частота - 84 МГц.
  • Объем оперативной памяти SRAM составляет 96 КБайт.
  • Объем флеш-памяти программ - 512 КБ.
  • Наличие DMA-контроллера, позволяющего разгрузить центральный процессор от выполнения ресурсоемких операций с памятью.

Схема, исходный проект и расположение выводов

Файлы EAGLE: arduino-Due-reference-design.zip

Схема: arduino-Due-schematic.pdf

Расположение выводов: распиновка SAM3X

Питание

Arduino Due может быть запитан от USB либо от внешнего источника питания - тип источника выбирается автоматически.

В качестве внешнего источника питания (не USB) может использоваться сетевой AC/DC-адаптер или аккумулятор/батарея. Штекер адаптера (диаметр - 2.1мм, центральный контакт - положительный) необходимо вставить в соответствующий разъем питания на плате. В случае питания от аккумулятора/батареи, ее провода необходимо подсоединить к выводам Gnd и Vin разъема POWER.

Напряжение внешнего источника питания может быть в пределах от 6 до 20 В. Однако, уменьшение напряжения питания ниже 7В приводит к уменьшению напряжения на выводе 5V, что может стать причиной нестабильной работы устройства. Использование напряжения больше 12В может приводить к перегреву стабилизатора напряжения и выходу платы из строя. С учетом этого, рекомендуется использовать источник питания с напряжением в диапазоне от 7 до 12В.

Ниже перечислены выводы питания, расположенные на плате:

  • VIN. Напряжение, поступающее в Arduino непосредственно от внешнего источника питания (не связано с 5В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, когда устройство запитано от внешнего адаптера.
  • 5V. На вывод поступает напряжение 5В от стабилизатора напряжения на плате, вне независимости от того, как запитано устройство: от адаптера (7 - 12В), от USB (5В) или через вывод VIN (7 - 12В). Запитывать устройство через выводы 5V или 3V3 не рекомендуется, поскольку в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.
  • 3V3. 3.3В, поступающие от стабилизатора напряжения на плате. Данный стабилизатор также обеспечивает питание микроконтроллера SAM3X. Максимальный ток, потребляемый от этого вывода, составляет 800 мА.
  • GND. Выводы земли.
  • IOREF. Этот вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера Ардуино. В зависимости от напряжения, считанного с вывода IOREF, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5В, так и с 3.3В-устройствами.

Память

Объем флеш-памяти программ микроконтроллера SAM3X составляет 512 КБ (2 блока по 256 КБ). Устройство выпускается с прошитим загрузчиком, расположенном в отдельной памяти ПЗУ. Объем доступной оперативной памяти SRAM составляет 96 КБ, представляющих собой два смежных банка памяти по 64 КБ и 32 КБ соответственно. Вся доступная память (Flash, ОЗУ и ПЗУ) имеет общее линейное адресное пространство.

Кнопка удаления, расположенная на плате, позволяет очистить Flash-память микроконтроллера SAM3X и стереть текущую загруженную программу. Для этого необходимо нажать и удерживать ее в течение нескольких секунд.

Входы и выходы

  • Цифровые входы/выходы: выводы 0 - 53 С использованием функций pinMode(), digitalWrite() и digitalRead() каждый из 54 цифровых выводов может работать в качестве входа или выхода. Рабочее напряжение этих выводов составляет 3.3В. Максимальный выходной ток каждого вывода колеблется в пределах от 3 мА до 15 мА (в зависимости от вывода), а максимальный входной ток - от 6 до 9 мА (в зависимости от вывода). Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 100 кОм. Помимо этого, некоторые из выводов могут выполнять дополнительные функции:
  • Последовательный интерфейс Serial: выводы 0 (RX) и 1 (TX)
  • Последовательный интерфейс Serial 1: выводы 19 (RX) и 18 (TX)
  • Последовательный интерфейс Serial 2: выводы 17 (RX) и 16 (TX)
  • Последовательный интерфейс Serial 3: выводы 15 (RX) и 14 (TX)

Используются для получения (RX) и передачи (TX) последовательных данных (уровень напряжения TTL 3.3В). Выводы 0 и 1 соединены с соответствующими выводами микросхемы ATmega16U2, выполняющей роль преобразователя USB-UART.

  • ШИМ: выводы со 2 по 13

С помощью функции analogWrite() могут выводить 8-битные аналоговые значения в виде ШИМ-сигнала. Разрядность ШИМ можно изменить с помощью функции analogWriteResolution().

  • Интерфейс SPI: выводы SPI (на платах Ардуино разъем ICSP)

С применением библиотеки SPI данные выводы могут осуществлять связь по интерфейсу SPI. Линии SPI выведены на 6-контактный разъем по центру платы, физически совместимый с Uno, Leonardo и Mega2560. Обратите внимание, что разъем SPI не предназначен для внутрисхемного программирования микроконтроллера SAM3X и может использоваться только для связи с другими SPI-устройствами. Кроме того, в Arduino Due SPI имеет ряд дополнительных возможностей, которые можно использовать с помощью специальных методов.

  • Интерфейс CAN: выводы CANRX и CANTX

Данные выводы поддерживают протокол связи CAN, однако на данный момент его реализация в Arduino API пока отсутствует.

  • "L" светодиод: вывод 13

Встроенный светодиод, подсоединенный к выводу 13. При отправке значения HIGH светодиод включается, при отправке LOW - выключается. Помимо этого, яркость свечения светодиода можно регулировать, поскольку вывод 13 может работать как ШИМ-выход.

  • Интерфейс TWI 1: выводы 20 (SDA) и 21 (SCL)
  • Интерфейс TWI 2: выводы SDA1 и SCL1

С использованием библиотеки Wire данные выводы могут осуществлять связь по интерфейсу TWI.

  • Аналоговые входы: выводы A0 - A11
  1. В Arduino Due есть 12 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 12-битного числа (4096 значений). Разрядность АЦП, взаимодействующего с этими выводами, по умолчанию, установлена в 10 бит (для совместимости с другими платами Ардуино). Изменить разрядность АЦП можно с помощью функции AnalogReadResolution"На аналоговые входы Arduino Due можно подавать напряжение в диапазоне от 0 до 3.3В. При подаче большего напряжения микроконтроллер SAM3X может выйти из строя. Функция AnalogReference() в Arduino Due игнорируется.

На плате вывод AREF соединен с выводом опорного напряжения микросхемы SAM3X через резисторный мост. Для использования вывода AREF необходимо выпаять резистор BR1.

  • DAC1 и DAC2

Аналоговые выходы 12-битного цифро-аналогового преобразователя. С помощью функции analogWrite() позволяют формировать 4096 различных уровня напряжения. Данные выводы могут использоваться для создания   удио-выхода смотреть библиотеку Audio.

Другие выводы на плате:

  • AREF

Опорное напряжение АЦП. Используется функцией analogReference().

  • Reset

Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения.

Связь

Arduino Due предоставляет ряд возможностей для осуществления связи с компьютером, еще одним Ардуино или другими микроконтроллерами, а также с различными устройствами, такими, как телефоны, планшеты, камеры и т.д. В микроконтроллере SAM3X есть один аппаратный UART и три аппаратных USART для реализации последовательных интерфейсов с TTL-уровнем напряжения 3.3В.

USB-порт для программирования на плате взаимодействует с микросхемой ATmega16U2, выполняющую роль USB-UART преобразователя, который при подключении к компьютеру определяется как виртуальный COM-порт. (Для корректной идентификации на Windows-системах потребуется .inf-файл, на системах с OSX и LINUX плата распознается автоматически). Микросхема 16U2 соединена с аппаратным приемопередатчиком UART микроконтроллера SAM3X. Для программирования микроконтроллера через микросхему ATmega16U2 используются выводы RX0 и TX0. В пакет программного обеспечения Ардуино входит специальная программа, позволяющая считывать и отправлять на Ардуино простые текстовые данные. При передаче данных через микросхему-преобразователь USB-UART во время USB-соединения с компьютером, на плате будут мигать светодиоды RX и TX. (При последовательной передаче данных посредством выводов 0 и 1, без использования USB-преобразователя, данные светодиоды не задействуются).

Штатный USB-порт на плате также соединен с контроллером SAM3X и предназначен для последовательной (CDC) передачи данных через USB. Данный порт позволяет Ардуино взаимодействовать с различными приложениями на компьютере (например, Serial Monitor или др.). Использование штатного USB-порта при подсоединении к компьютеру позволяет Arduino Due работать в качестве USB-мыши или клавиатуры. Более подробную информацию об   этом см. в справке по библиотекам Mouse и Keyborad.

Штатный USB-порт также может работать как USB-хост и поддерживает подключение периферийных устройств, таких как мыши, клавиатуры или смартфоны. Более подробную информацию об этом см. в справке по библиотеке USBHost.

В микроконтроллере SAM3X также реализована поддержка последовательных интерфейсов TWI и SPI. В программное обеспечение Ардуино входит библиотека Wire, позволяющая упростить работу с шиной I2C; для получения более подробной информации см. документацию. Для работы с интерфейсом SPI используйте библиотеку SPI.

Программирование

Arduino Due программируется с помощью программного обеспечения Ардуино (скачать). Для получения более подробной информации см. справку и примеры.

Процесс загрузки программ в микроконтроллер SAM3X отличается от процесса прошивки AVR-микроконтроллеров, используемых в других платах Ардуино. Особенность SAM3X заключается в том, что для его перепрошивки требуется предварительно очищать Flash-память контроллера. Такая необходимость обусловлена тем, что процесс загрузки программы контролируется загрузчиком в ПЗУ SAM3X, который запускается только при условии отсутствия программы во Flash-памяти микроконтроллера.

Таким образом, любой из USB-портов может использоваться для прошивки платы. Тем не менее, рекомендуется использовать USB-порт для программирования ("Programming Port" на рисунке) в силу некоторых особенностей процесса очистки памяти микроконтроллера:

  • Порт для программирования: Для использования этого порта в среде разработки Arduino IDE в качестве рабочей платы выберите "Arduino Due (Programming Port)". Подсоедините Due к компьютеру, соединив USB-кабель c разъемом для программирования (расположенным ближе к разъему питания). Порт для программирования взаимодействует с микросхемой 16U2, выполняющей роль преобразователя USB-UART. Микросхема 16U2 в свою очередь соединена с первым UART микроконтроллера SAM3X (выводы RX0 и TX0), а также управляет его выводами Reset и Erase. При открытии и закрытии порта на скорости 1200 бод, на выводах Erase и Reset формируется активный уровень, что приводит к очистке памяти микроконтроллера. Таким образом, срабатывает так называемая процедура "аппаратной очистки" перед взаимодействием с UART SAM3X. Этот способ более надежен, чем "программная очистка" при использовании штатного USB-порта, и работает даже в случае зависания процессора. Именно поэтому для прошивки Arduino Due рекомендуется использовать порт для программирования.
  • Штатный USB-порт: Для использование этого порта в среде разработки Arduino IDE в качестве рабочей платы выберите "Arduino Due (Naive USB Port)". Штатный USB-порт соединен непосредственно с микроконтроллером SAM3X. Подсоедините Due к компьютеру, соединив USB-кабель со штатным USB-разъемом (расположенным ближе к кнопке сброса). Открытие и закрытие порта на скорости 1200 бод приведет к срабатыванию процедуры "программной очистки", во время которой очищается flash-память, перезагружается микроконтроллер и стартует загрузчик. Поскольку эта процедура выполняется исключительно программой самого микроконтроллера SAM3X, то в случае зависания последнего процесс очистки может не произойти. При этом открытие/закрытие штатного порта на различных скоростях не поможет перезагрузить микроконтроллер.

В отличие от других плат Ардуино, для программирования которых используется avrdude, процесс прошивки Arduino Due осуществляется с помощью  программы bossac.

Исходный код прошивки микроконтроллера ATmega16U2 доступен в репозитории Ардуино. Прошить микроконтроллер можно через разъем для внутрисхемного программирования ISP с помощью внешнего программатора (в этом случае затрется DFU-загрузчик).

Защита USB от перегрузок

В Arduino Due есть восстанавливаемые предохранители, защищающие USB-порт компьютера от коротких замыканий и перегрузок. Несмотря на то, что большинство компьютеров имеют собственную защиту, такие предохранители обеспечивают дополнительный уровень защиты. Если от USB-порта потребляется ток более 500 мА, предохранитель автоматически разорвет соединение до устранения причин короткого замыкания или перегрузки.

Физические характеристики и совместимость с платами расширения

Максимальная длина и ширина печатной платы Arduino Due составляет 10.2 см и 5.4 см соответственно, с учетом USB-разъемов и разъема питания, выступающих за пределы платы. Три крепежных отверстия позволяют прикреплять плату к поверхности или корпусу. Обратите внимание, что расстояние между цифровыми выводами 7 и 8 не кратно традиционным 2.54 мм и составляет 4 мм.

Arduino Due спроектирован таким образом, чтобы обеспечивать совместимость с большинством плат расширения для Uno, Diecimila или Duemilanove. Расположение основных выводов платы полностью эквивалентно: цифровые выводы 0 - 13 (а также смежные выводы AREF и GND), аналоговые входы 0 - 5, разъем POWER и разъем "ICSP" (SPI) - все выводы расположены на одинаковых расстояниях друг относительно друга. Кроме того, линии основного приемопередатчика UART соединены с одними и теми же выводами (0 и 1). Пожалуйста, обратите внимание, что номера выводов I2C на Arduino Due (20 и 21) отличаются от выводов Duemilanove / Diecimila (аналоговые входы 4 и 5).

Основные версии плат Arduino представлены следующими моделями:

Due — плата на базе 32-битного ARM микропроцессора Cortex-M3 ARM SAM3U4E;

Leonardo — плата на микроконтроллере ATmega32U4;

Uno — самая популярная версия базовой платформы Arduino;

Duemilanove — плата на микроконтроллере ATmega168 или ATmega328;

Diecimila — версия базовой платформы Arduino USB;

Nano — компактная платформа, используемая как макет. Nano подключается к компьютеру при помощи кабеля USB Mini-B;

Mega ADK — версия платы Mega 2560 с поддержкой интерфейса USB-host для связи с телефонами на Android и другими устройствами с интерфейсом USB;

Mega2560 — плата на базе микроконтроллера ATmega2560 с использованием чипа ATMega8U2 для последовательного соединения по USB-порту;

Mega — версия серии Mega на базе микроконтроллера ATmega1280;

Arduino BT — платформа с модулем Bluetooth для беспроводной связи и программирования;

LilyPad — платформа, разработанная для переноски, может зашиваться в ткань;

Fio — платформа разработана для беспроводных применений. Fio содержит разъем для радио XBee, разъем для батареи LiPo и встроенную схему подзарядки;

Mini — самая маленькая платформа Arduino;

Pro — платформа, разработанная для опытных пользователей, может являться частью большего проекта;

Pro Mini — как и платформа Pro, разработана для опытных пользователей, которым требуется низкая цена, меньшие размеры и дополнительная функциональность.

 

 Плата расширения L293D, ИК-датчик VS1838B, TFT LCD, Модем M590E GSM GPRS, "монитор TFT LCD, датчик движения HC-SR501, ИК-пульт дистанционного управления, Радиомодуль NRF24L01, SD Card Module, Звуковой модуль, 5-axis stepper motor driver, Шаговый двигатель, Модем M590E GSM GPRS, 5-axis stepper motor driver,  Часы реального времени DS 3231/DS 1307, терморегулятор W1209 DC, Релейный модуль, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E,  датчик движения HC-SR501, Передатчик и приемник в диапазоне RF 433 Mhz, Блок питания, L293D, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, Датчики контроля температуры, Радиомодуль NRF24L01, OKI 120A2, Rotary Encoder, SD Card Module, Беспроводной пульт дистанционного управления, Микросхема контроллера коллекторного электродвигателя, Модуль Bluetooth HC-06,, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Mini 360 на схеме LM2596, MP3-TF-16P, L293D, Модуль LCD монитора, Инфракрасные датчики расстояния, Часы реального времени,  USB Host Shield, HC-SR501, Cветочувствительный датчик сопротивления, блок питания Mini 360 на схеме LM2596, ЖК-дисплей TFT дисплей, Контроллер L298N, HC-SR501, Модуль MP3 Player WTV020, GSM GPRS, Сервоприводы, Модем M590E GSM GPRS, Часы реального времени DS 3231/DS 1307, Модуль Wi-Fi ESP8266-12E, Инфракрасные датчики расстояния, Card Module, Ультразвуковые дальномеры HC-SR04, Блок питания,  Карта памяти SD, Mini 360, Ethernet shield, L293D, блок питания Mini 360 на схеме LM2596, Радиомодуль, датчик температуры DS18B20, ИК-пульт дистанционного управления, USB конвертер UART, ИК-пульт,  Антена для модуля WiFi, Ethernet shield,  Модуль блока питания XL6009, Микросхема контроллера коллекторного электродвигателя, Модуль качества воздуха MQ-135, Микросхема контроллера коллекторного электродвигателя, ИК-пульт дистанционного управления, SD Card Module, Радиомодуль NRF24L01, двигатель OKI,  5-axis stepper motor driver, L293D, TB6560, Драйвер шагового двигателя TB6600, Шаговый двигатель,  Модуль камеры, Блок питания, L293D, блок питания Mini 360 на схеме LM2596, 5axis mach3 interface, Карта памяти SD, Ethernet shield, Контроллер L298N, датчик движения HC-SR501, Модуль Wi-Fi ESP8266-12E, Модуль LCD монитора LCD1602, Шаговый двигатель OKI 120A2, Шаговый двигатель, Шаговый двигатель.

 

 

All Vintage Vinyl Records VinylSU.xyz

1.png2.png3.png4.png5.png